Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Nano Lett ; 24(15): 4462-4470, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38574275

RESUMO

Micro/nanofiber-based face masks are recommended as personal protective equipment (PPE) against particulate matter (PM), especially PM0.3. Ensuring thermal comfort in daily use face masks is essential in many situations. Here, radiative thermal management is introduced into face masks to elevate the user comfort. An interlayered poly(lactic acid) (PLA) micro/nanofibrous filter effectively captures PM0.3 (99.69%) with minimal pressure drop (49 Pa). Thermal regulation is accomplished by controlling the mid-infrared (MIR) emissivity of the face mask's outer surface. Cooling face masks feature cotton nonwovens with high MIR emissivity (90.7%) for heat dissipation, while warming face masks utilize perforated Al/PE films with minimal MIR emissivity (10.7%) for warmth retention. Skin temperature measurements indicate that the skin covered by the cooling face mask could be 1.1 °C lower than that covered by the 3M face mask, while the skin covered by the warming face mask could be 1.3 °C higher than that covered by the 3M face mask.

2.
Health Secur ; 22(2): 108-129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625036

RESUMO

In 2022, the Pentagon Force Protection Agency found threat agnostic detection of novel bioaerosol threats to be "not feasible for daily operations" due to the cost of reagents used for metagenomics, cost of sequencing instruments, and cost of labor for subject matter experts to analyze bioinformatics. Similar operational difficulties might extend to many of the 280,000 buildings (totaling 2.3 billion square feet) at 5,000 secure US Department of Defense military sites, 250 Navy ships, as well as many civilian buildings. These economic barriers can still be addressed in a threat agnostic manner by dynamically pooling samples from dry filter units, called spike-triggered virtualization, whereby pooling and sequencing depth are automatically modulated based on novel biothreats in the sequencing output. By running at a high average pooling factor, the daily and annual cost per dry filter unit can be reduced by 10 to 100 times depending on the chosen trigger thresholds. Artificial intelligence can further enhance the sensitivity of spike-triggered virtualization. The risk of infection during the 12- to 24-hour window between a bioaerosol incident and its detection remains, but in some cases it can be reduced by 80% or more with high-speed indoor air cleaning exceeding 12 air changes per hour, which is similar to the rate of air cleaning in passenger airplanes in flight. That level of air changes per hour or higher is likely to be cost-prohibitive using central heating ventilation and air conditioning systems, but it can be achieved economically by using portable air filtration in rooms with typical ceiling heights (less than 10 feet) for a cost of approximately $0.50 to $1 per square foot for do-it-yourself units and $2 to $5 per square foot for high-efficiency particulate air filters.


Assuntos
Inteligência Artificial , Militares , Estados Unidos , Humanos , Análise Custo-Benefício , Biologia Computacional , Órgãos Governamentais
3.
Adv Mater ; : e2311129, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557985

RESUMO

Air pollution threats to human health have increased awareness of the role of filter units in air cleaning applications. As an ideal energy-saving strategy for air filters, the slip effect on nanofiber surfaces can potentially overcome the trade-off between filtration efficiency and pressure drop. However, the potential of the slip effect in nanofibrous structures is significantly limited by the tight nanofiber stacks. In this study, trichome-like biomimetic (TLB) air filters with 3D-templated silicone nanofilaments (average diameter: ≈74 nm) are prepared based on an in situ chemical vapor deposition (CVD) method inspired by plant purification. Theoretical modeling and experimental results indicate that TLB air filters make significant use of the slip effect to overcome the efficiency-resistance tradeoff. The selectable filter class (up to U15, ≈99.9995%) allows TLB air filters to meet various requirements, and their integral filtration performance surpasses that of most commodity air filters, including melt-blown cloth, ePTFE membranes, electrospun mats, and glass fiber paper. The proposed strategy directly transforms commercial filter media and filters into TLB air filters using a bottom-up, one-step approach. As a proof-of-concept, reusable N95 respirators and air purifiers equipped with TLB air filters are fabricated, overcoming the limitations of existing filter designs and fabrication methods.

4.
Polymers (Basel) ; 16(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38611147

RESUMO

The development of high-performance filtration materials is essential for the effective removal of airborne particles, and metal-organic frameworks (MOFs) anchored to organic polymer matrices are considered to be one of the most promising porous adsorbents for air pollutants. Nowadays, most air filters are generally based on synthetic fiber polymers derived from petroleum residues and have limited functionality, so the use of MOFs in combination with nanofiber air filters has received a lot of attention. Here, a conjugated electrostatic spinning method is demonstrated for the one-step preparation of poly(lactic acid) (PLA) nanofibrous membranes with a bimodal diameter distribution and the anchoring of Zeolitic Imidazolate Framework-8 (ZIF-8) by the introduction of TiO2 and in situ generation to construct favorable multiscale fibers and rough structures. The prepared PLA/TZ maintained a good PM2.5 capture efficiency of 99.97%, a filtration efficiency of 96.43% for PM0.3, and a pressure drop of 96.0 Pa, with the highest quality factor being 0.08449 Pa-1. Additionally, ZIF-8 was uniformly generated on the surface of PLA and TiO2 nanofibers, obtaining a roughened structure and a larger specific surface area. An enhanced filtration retention effect and electrostatic interactions, as well as active free radicals, can be generated for the deep inactivation of bacteria. Compared with the unmodified membrane, PLA/TZ prepared antibacterial characteristics induced by photocatalysis and Zn2+ release, with excellent bactericidal effects against S. aureus and E. coli. Overall, this work may provide a promising approach for the development of efficient biomass-based filtration materials with antimicrobial properties.

5.
Int J Circumpolar Health ; 83(1): 2335702, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38546171

RESUMO

Alaska Native and American Indian children experience frequent respiratory illness. Indoor air quality is associated with the severity and frequency of respiratory infections in children. High efficiency particulate air (HEPA) purifiers effectively improve indoor air quality and may protect respiratory health. In 2019, the Yukon-Kuskokwim Health Corporation implemented a pilot programme that provided education and HEPA purifiers to households of children with chronic lung conditions. The team evaluated HEPA purifier acceptability and use by interviewing representatives from 11 households that participated in the pilot programme. All interviewees reported improvement in their child's health, and some believed that the health of other household members was also improved because of the HEPA purifier. Interviewees reported that the HEPA purifiers were easy to use, quiet, and not expensive to run. Five of 11 households were still using the HEPA purifier at the time of the interview, which was about three years after receipt of the unit. The most common reasons for discontinuing use were equipment failure and lack of replacement filter, suggesting that programme support could increase sustainability. Our evaluation suggests that HEPA purifiers are acceptable and feasible for use in rural Alaska Native households.


Assuntos
Filtros de Ar , Poluição do Ar em Ambientes Fechados , Nativos do Alasca , Pneumopatias , Criança , Humanos , Poluição do Ar em Ambientes Fechados/análise , Características da Família
6.
Trials ; 25(1): 197, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38504367

RESUMO

BACKGROUND: Acute viral bronchiolitis is the most common reason for hospitalization of infants in the USA. Infants hospitalized for bronchiolitis are at high risk for recurrent respiratory symptoms and wheeze in the subsequent year, and longer-term adverse respiratory outcomes such as persistent childhood asthma. There are no effective secondary prevention strategies. Multiple factors, including air pollutant exposure, contribute to risk of adverse respiratory outcomes in these infants. Improvement in indoor air quality following hospitalization for bronchiolitis may be a prevention opportunity to reduce symptom burden. Use of stand-alone high efficiency particulate air (HEPA) filtration units is a simple method to reduce particulate matter ≤ 2.5 µm in diameter (PM2.5), a common component of household air pollution that is strongly linked to health effects. METHODS: BREATHE is a multi-center, parallel, double-blind, randomized controlled clinical trial. Two hundred twenty-eight children < 12 months of age hospitalized for the first time with bronchiolitis will participate. Children will be randomized 1:1 to receive a 24-week home intervention with filtration units containing HEPA and carbon filters (in the child's sleep space and a common room) or to a control group with units that do not contain HEPA and carbon filters. The primary objective is to determine if use of HEPA filtration units reduces respiratory symptom burden for 24 weeks compared to use of control units. Secondary objectives are to assess the efficacy of the HEPA intervention relative to control on (1) number of unscheduled healthcare visits for respiratory complaints, (2) child quality of life, and (3) average PM2.5 levels in the home. DISCUSSION: We propose to test the use of HEPA filtration to improve indoor air quality as a strategy to reduce post-bronchiolitis respiratory symptom burden in at-risk infants with severe bronchiolitis. If the intervention proves successful, this trial will support use of HEPA filtration for children with bronchiolitis to reduce respiratory symptom burden following hospitalization. TRIAL REGISTRATION: NCT05615870. Registered on November 14, 2022.


Assuntos
Filtros de Ar , Poluição do Ar em Ambientes Fechados , Asma , Bronquiolite , Criança , Lactente , Humanos , Qualidade de Vida , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Material Particulado/efeitos adversos , Poeira , Bronquiolite/diagnóstico , Bronquiolite/prevenção & controle , Carbono , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
7.
Int J Environ Health Res ; : 1-14, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357756

RESUMO

We conducted simultaneous real-time measurements for particles on the premises of four schools, two of which were naturally ventilated (NV) and two mechanically ventilated (MV) in Kanpur, India. Health to school children from reduced particle levels inside classrooms simulated to the lowest acceptable levels (ISHRAE Class C: PM10 ≤ 100 µg/m3 & PM2.5 ≤ 25 µg/m3) using air filters were examined. Lung deposition of particles was used as a proxy for health impacts and calculated using the MPPD model. The particle levels in all classrooms were above the baseline, with NV classrooms having higher particle masses than MV classrooms: 72.16% for PM1, 74.66% for PM2.5, and 85.17% for PM10. Our calculation reveals a whooping reduction in particles deposited in the lungs (1512% for PM10 and 1485% for PM2.5) in the case of the NV classrooms. Results highlight unhealthy air inside classrooms and suggest urgent interventions, such as simple filtration techniques, to achieve acceptable levels of particles inside schools.

8.
J Hazard Mater ; 468: 133770, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401212

RESUMO

Recently, the demand for healthcare products especially wearable smart masks is increasing. The biosafety and degradability of smart masks are crucial for human health and environmental protection. However, the development of biodegradable and biocompatible fibrous membranes with high filtration efficiency and low pressure drop is still a challenge. How to realize the collaborative improvement between air filtration efficiency and pressure drop of the nanofibrous membrane is still a challenge. Here, a tribo-charge enhanced and biodegradable nanofibrous membranes (TCB NFMs) with highly fluffy structure for air filtration and self-powered respiration monitoring systems is reported for the first time. The filtration efficiency and pressure drop of the prepared membranes for 0.3 µm NaCl particulates is 99.971% and 41.67 Pa. The TCB NFMs based smart mask possesses a series of satisfactory and excellent characteristics, such as self-powered, biodegradable, biocompatible, high filtration efficiency, and low pressure drop, which is highly promising for application in air filtration systems and intelligent wearable respiration monitoring systems.


Assuntos
Filtros de Ar , Nanofibras , Humanos , Celulose , Conservação dos Recursos Naturais , Respiração
9.
ACS Appl Mater Interfaces ; 16(8): 10148-10157, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38363186

RESUMO

The COVID-19 pandemic sparked public health concerns about the transmission of airborne viruses. Current methods mainly capture pathogens without inactivation, leading to potential secondary pollution. Herein, we evaluated the inactivation performance of a model viral species (MS2) in simulated bioaerosol by an electromagnetically enhanced air filtration system under a 300 kHz electromagnetic induction field. A nonwoven fabric filter was coated with a 2D catalyst, MXene (Ti3C2Tx), at a coating density of 4.56 mg·cm-2 to absorb electromagnetic irradiation and produce local heating and electromagnetic field for microbial inactivation. The results showed that the MXene-coated air filter significantly enhanced the viral removal efficiency by achieving a log removal of 3.4 ± 0.15 under an electromagnetic power density of 369 W·cm-2. By contrast, the pristine filter without catalyst coating only garnered a log removal of 0.3 ± 0.04. Though the primary antimicrobial mechanism is the local heating as indicated by the elevated surface temperature of 72.2 ± 4 °C under the electromagnetic field, additional nonthermal effects (e.g., dielectrophoresis) on enhanced viral capture during electromagnetically enhanced filtration were investigated by COMSOL simulation to delineate the potential transmission trajectories of bioaerosol. The results provide unique insights into the mechanisms of pathogen control and thus promote alternative solutions for preventing the transmission of airborne pathogens.


Assuntos
Nitritos , Pandemias , Elementos de Transição , Vírus , Humanos , Microbiologia do Ar , Aerossóis e Gotículas Respiratórios , Filtração/métodos , Campos Eletromagnéticos
10.
Macromol Rapid Commun ; : e2300685, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38339795

RESUMO

The air filtration materials with high efficiency, low resistance, and extra antibacterial property are crucial for personal health protection. Herein, a tree-like polyvinylidene fluoride (PVDF) nanofibrous membrane with hierarchical structure (trunk fiber of 447 nm, branched fiber of 24.7 nm) and high filtration capacity is demonstrated. Specifically, 2-hydroxypropyl trimethyl ammonium chloride terminated hyperbranched polymer (HBP-HTC) with near-spherical three-dimensional molecular structure and adjustable terminal positive groups is synthesized as an additive for PVDF electrospinning to enhance the jet splitting and promote the formation of branched ultrafine nanofibers, achieving a coverage rate of branched nanofibers over 90% that is superior than small molecular quaternary ammonium salts. The branched nanofibers network enhances mechanical properties and filtration efficiency (99.995% for 0.26 µm sodium chloride particles) of the PVDF/HBP-HTC membrane, which demonstrates reduced pressure drop (122.4 Pa) and a quality factor up to 0.083 Pa-1 on a 40 µm-thick sample. More importantly, the numerous quaternary ammonium salt groups of HBP-HTC deliver excellent antibacterial properties to the PVDF membranes. Bacterial inhibitive rate of 99.9% against both S. aureus and E. coli is demonstrated in a membrane with 3.0 wt% HBP-HTC. This work provides a new strategy for development of high-efficiency and antibacterial protection products.

11.
Int J Biol Macromol ; 261(Pt 1): 129687, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272414

RESUMO

Airborne particulate matter is a pressing environmental and public health concern globally. This study aimed to develop sustainable filtration materials from cellulose nanofibers (CNFs) modified with graphene oxide (GO) to capture fine particulates from air effectively. CNFs were extracted from α-cellulose via mechanical grinding and modified with 0.5-1.5 wt% GO solution by ultrasonication to produce CNF-GO nanocomposites. These were freeze-dried into highly porous, lightweight aerogels for air filtration applications. Fourier transform infrared spectroscopy (FT-IR) confirmed GO incorporation through hydroxyl group interactions. Field emission scanning electron microscopy (FE-SEM) revealed a porous 3D network with reduced porosity after GO addition due to pore blocking. X-ray diffraction analysis showed the cellulose I crystal structure was retained after modification. Brunauer-Emmett-Teller (BET) measurements indicated increased density but decreased surface area and pore volume with GO loading. The thermogravimetric analysis demonstrated improved thermal stability with GO incorporation due to oxidative reactions and a barrier effect. The particulate absorption efficiency markedly increased from 86.37 % to 99.98 % for CNFs modified with 1.5 wt% GO due to the high surface area, surface oxygen functionalities, and nanoplatelet morphology of GO. The nanofiber filters with 1.5 wt% GO exhibited a maximum absorption efficiency of 99.98 % and a quality factor of 0.0912 Pa-1. Although GO reduced biodegradability, substantial degradation occurred under soil conditions. Overall, the sustainable, high-efficiency CNF-GO air filters developed in this work demonstrate immense promise for controlling air pollution and protecting human health.


Assuntos
Grafite , Nanofibras , Humanos , Nanofibras/química , Material Particulado , Espectroscopia de Infravermelho com Transformada de Fourier , Celulose/química
12.
Polymers (Basel) ; 16(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38201819

RESUMO

A large number of non-degradable materials have severely damaged the ecological environment. Now, people are increasingly pursuing the use of environmentally friendly materials to replace traditional chemical materials. Polyhydroxyalkonates (PHAs) are receiving increasing attention because of the unique biodegradability and biocompatibility they offer. However, the applications of PHAs are still limited due to high production costs and insufficient study. This project examines the optimal electrospinning parameters for the production of PHA-based fibrous membranes for air filtration. A common biodegradable polyester, Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), was electrospun into a nanofibrous membrane with a well-controlled surface microstructure. In order to produce smooth, bead-free fibers with micron-scale diameters, the effect of the process parameters (applied electric field, solution flow rate, inner diameter of hollow needle, and polymer concentration) on the electrospun fiber microstructure was optimized. The well-defined fibrous structure was optimized at an applied electric field of 20 kV, flow rate of 0.5 mL/h, solution concentration of 12 wt.%, and needle inner diameter of 0.21 mm. The morphology of the electrospun PHBV fibrous membrane was observed by scanning electron microscopy (SEM). Fourier transform infrared (FTIR) and Raman spectroscopy were used to explore the chemical signatures and phases of the electrospun PHBV nanofiber. The ball burst strength (BBS) was measured to assess the mechanical strength of the membrane. The small pore size of the nanofiber membranes ensured they had good application prospects in the field of air filtration. The particle filtration efficiency (PFE) of the optimized electrospun PHBV fibrous membrane was above 98% at standard atmospheric pressure.

13.
Polymers (Basel) ; 16(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257008

RESUMO

Rapid social and industrial development has resulted in an increasing demand for fossil fuel energy, which increases particulate matter (PM) pollution. In this study, we employed a simple one-step electrospinning technique to fabricate polysulfone (PSF) fiber membranes for PM filtration. A 0.3 g/mL polymer solution with an N,N-dimethylformamide:tetrahydrofuran volume ratio of 3:1 yielded uniform and bead-free PSF fibers with a diameter of approximately 1.17 µm. The PSF fiber membrane exhibited excellent hydrophobicity and mechanical properties, including a tensile strength of 1.14 MPa and an elongation at break of 116.6%. Finally, the PM filtration performance of the PSF fiber membrane was evaluated. The filtration efficiencies of the membrane for PM2.5 and PM1.0 were approximately 99.6% and 99.2%, respectively. The pressure drops were 65.0 and 65.2 Pa, which were significantly lower than those of commercial air filters. Using this technique, PSF fiber membrane filters can be easily fabricated over a large area, which is promising for numerous air filtration systems.

14.
Int J Biol Macromol ; 254(Pt 1): 127729, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287566

RESUMO

Facemasks play a significant role as personal protective equipment during the COVID-19 pandemic, but their longevity is limited by the easy dissipation of electrostatic charge and the accumulation of bacteria. In this study, nanofibrous membranes composed of polyacrylonitrile and chitosan biguanide hydrochloride (PAN@CGH) with remarkable antibacterial characteristics were prepared through the coaxial electrospinning process. Particulate matter could be efficiently captured by the fibrous membrane, up to 98 % or more, via polarity-dominated forces derived from cyano and amino groups. As compared commercial N95 masks, the PAN@CGH was more resistant to a wider variety of disinfection protocols. Additionally, the nanofibrous membrane could kill >99.99 % of both Escherichia coli and Staphylococcus aureus. Based on these characteristics, PAN@CGH nanofibrous membrane was applied to facial mask, which possessed an excellent and long-lasting effect on the capture of airborne particles. This work may be one of the most promising strategies on designing high-performance face masks for public health protection.


Assuntos
Quitosana , Nanofibras , Humanos , Quitosana/farmacologia , Biguanidas/farmacologia , Pandemias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli , Filtração
15.
Int J Biol Macromol ; 260(Pt 2): 129566, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253148

RESUMO

Despite great potential in fabrication of biodegradable protective membranes by electrospinning of poly(lactic acid) (PLA) nanofibers, it is still thwarted by smooth surfaces and poor electroactivity that challenge the promotion of electret properties and long-term air filtration performance. Here, a microwave-assisted synthetic method was used to customize dielectric TiO2 nanocrystals of ultrasmall and uniform dimensions (∼30 nm), which were homogeneously embedded at beaded PLA nanofibers (PLA@TiO2, diameter of around 280 nm) by the combined "electrospinning-electrospray" approach. With small amounts of TiO2 (2, 4 and 6 wt%), the nanopatterned PLA@TiO2 nanofibrous membranes (NFMs) were characterized by largely increased dielectric constants (nearly 1.9), surface potential (up to 1.63 kV) and triboelectric properties (output voltage of 12.2 V). Arising from the improved electroactivity and self-charging mechanisms, the nanopatterned PLA@TiO2 NFMs exhibited remarkable PM0.3 filtration properties (97.9 %, 254.6 Pa) even at the highest airflow rate of 85 L/min, surpassing those of pure PLA membranes (86.2 %, 483.7 Pa). This was moreover accompanied by inhibition rates of 100 % against both E. coli and S. aureus, as well as excellent UV-blocking properties (UPF as high as 3.8, TUVA of 50.9 % and TUVB of 20.1 %). The breathable and electroactive nanopatterned PLA NFMs permit promising applications in multifunctional protective membranes toward excellent UV shielding and high-efficiency removal of both PMs and pathogens.


Assuntos
Nanofibras , Nanofibras/química , Staphylococcus aureus , Escherichia coli , Poliésteres/química , Antibacterianos/farmacologia , Antibacterianos/química
16.
Int J Biol Macromol ; 256(Pt 1): 128204, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979763

RESUMO

Air pollution is a major environmental and public health issue. Each year, large amounts of particulate matter (PM) and other harmful pollutants are released into the atmosphere. Conventional polymer nanofiber filters lack the functionality to capture ultrafine PM. As a sustainable alternative, this work developed titanium dioxide (TiO2) nanoparticle surface-modified cellulose nanofiber (CNF) aerogels for PM2.5 filtration. CNFs were extracted via mechanical disintegration to diameters below 100 nm. The nanofibers were functionalized with 1.0-2.5 wt% TiO2 nanoparticles using citric acid cross-linking. Cylindrical aerogels were fabricated by freezing and lyophilizing aqueous suspensions. Structural, morphological, thermal, and mechanical properties were characterized. TiO2 modification increased density (11.8-19.7 mg/cm3), specific surface area (287-370 m2/g), and Young's modulus (33.5-125.5 kPa) but decreased porosity (99.6 %-97.7 %), pore size (20.2-15.6 nm) and thermal stability compared to unmodified cellulose aerogels. At 2.5 wt% loading, the optimized aerogels achieved 100 % absorption of 0.1-5 µm particulates owing to reduced pore size. Despite enhanced filtration capabilities, the modified CNF aerogels retained inherent biodegradability, degrading over 70 % within one month of soil burial. This pioneering research establishes TiO2 functionalized CNF aerogels as promising sustainable alternatives to traditional petroleum-based air filters, representing an innovative approach to creating next-generation nanofiltration materials capable of effectively capturing fine and ultrafine particulate matter pollutants.


Assuntos
Poluentes Ambientais , Nanofibras , Nanopartículas , Titânio , Nanofibras/química , Géis/química , Celulose/química
17.
J Food Sci ; 89(1): 390-403, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010746

RESUMO

An economical and effective storage solution has been designed in this work for the storage of postharvest fruits and vegetables. Musa acuminata or banana has a shelf life of 5-6 days in open uncontrolled environment. This article reports a storage solution of M. acuminata in a controlled enclosure containing titanium oxide (TiO2 )-coated inner walls and irradiated with ultraviolet ray of band "C," an air filtration unit, 5% by volume potassium permanganate (KMnO4 ) solution in a clay pot, grow lights, and activated charcoal granules. The same fruit was kept in an uncontrolled environment too. The percentages of dark spots on banana (M. acuminata) upon storage in controlled and uncontrolled environments have been estimated using an image-processing algorithm. The prediction of dark spots was conducted using multi-linear and multivariate polynomial regression. Experimentation with optimum process parameters obtained with genetic algorithm resulted in a shelf life extension of 6 days as compared to its storage in an uncontrolled environment. The setup can be used in vegetable and fruit markets for the extension of shelf life of postharvest perishable items in a compact and cost-effective manner. The setup does not use any refrigeration process thereby decreasing energy requirement.


Assuntos
Musa , Ambiente Controlado , Frutas/genética
18.
J Colloid Interface Sci ; 657: 463-471, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38070332

RESUMO

Air pollution has garnered significant worldwide attention; however, the existing air filtration materials still suffer from issues related to monotonous structure and the inherent trade-off between PM rejection and air permeability. Herein, a spider web-inspired composite membrane with continuous monolayer structured 2D nano-networks tightly welded on nanofibers in the electrospun membrane scaffold is designed via a hierarchical phase separation strategy. The resultant biomimetic hierarchical-structured membranes possess the integrated features of hierarchical multiscale structures of 2D ultrafine networks composed of nanowires with a diameter of 31 nm self-assembled by nanoparticles, exceptional characteristics involving small average aperture, extremely low network thickness, high porosity and promising pore channel connectivity, combined with rich surface polar functional groups (3.02D dipole moment). Consequently, the composite membrane exhibits a high PM0.3 capture efficiency of 99.6 % and low pressure drop of 58.8 Pa, less than 0.06 % of atmosphere pressure, with outstanding long-term PM2.5 recycling filtration performance. The hierarchical phase separation-driven 2D nano-networks construction strategy, by virtue of their feasibility and tunability, holds great promise for widespread application across diverse membrane-related domains for air filtration.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38048182

RESUMO

Despite the great promise in the development of biodegradable and ecofriendly air filters by electrospinning of poly(lactic acid) (PLA) nanofibrous membranes (NFMs), the as-electrospun PLA nanofibers are generally characterized by poor electroactivity and smooth surface, challenging the exploitation of electrostatic adsorption and physical interception that are in need for efficient removal of pathogens and particulate matters (PMs). Herein, a combined "electrospinning-electrospray" strategy was disclosed to functionalize the PLA nanofibers by direct anchoring of highly dielectric BaTiO3@ZIF-8 nanohybrids (BTO@ZIF-8), conferring simultaneous promotion of surface roughness, electret properties (surface potential as high as 7.5 kV), and self-charging capability (∼190% increase in tribo-output voltage compared to that of pure PLA). Benefiting from the well-tailored morphology and increased electroactivity, the electrospun-electrosprayed PLA/BTO@ZIF-8 exhibited excellent PM-capturing performance (up to 96.54% for PM0.3 and 99.49% for PM2.5) while providing desirable air resistance (only 87 Pa at 32 L/min) due primarily to the slip flow of air molecules over the nanohybrid protrusions. This was accompanied by excellent antibacterial properties (99.9% inhibition against both Staphylococcus aureus and Escherichia coli), arising presumably from the synergistic effects of enhanced reactive oxygen species (ROS) generation, plentiful ion release, and surface charges. Our proposed strategy opens up pathways to afford exceptional combination of high-efficiency and low-resistance filtration, excellent antibacterial performance, and mechanical robustness without sacrificing the biodegradation profiles of PLA NFMs, holding potential implications for efficient and long-term healthcare.

20.
Toxics ; 11(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38133420

RESUMO

Background: The Reducing Air Pollution in Detroit Intervention Study (RAPIDS) was designed to evaluate cardiovascular health benefits and personal fine particulate matter (particulate matter < 2.5 µm in diameter, PM2.5) exposure reductions via portable air filtration units (PAFs) among older adults in Detroit, Michigan. This double-blind randomized crossover intervention study has shown that, compared to sham, air filtration for 3 days decreased 3-day average brachial systolic blood pressure by 3.2 mmHg. The results also showed that commercially available HEPA-type and true HEPA PAFs mitigated median indoor PM2.5 concentrations by 58% and 65%, respectively. However, to our knowledge, no health intervention study in which a significant positive health effect was observed has also evaluated how outdoor and indoor PM2.5 sources impacted the subjects. With that in mind, detailed characterization of outdoor and indoor PM2.5 samples collected during this study and a source apportionment analysis of those samples using a positive matrix factorization model were completed. The aims of this most recent work were to characterize the indoor and outdoor sources of the PM2.5 this community was exposed to and to assess how effectively commercially available HEPA-type and true HEPA PAFs were able to reduce indoor and outdoor PM2.5 source contributions. Methods: Approximately 24 h daily indoor and outdoor PM2.5 samples were collected on Teflon and Quartz filters from the apartments of 40 study subjects during each 3-day intervention period. These filters were analyzed for mass, carbon, and trace elements. Environmental Protection Agency Positive Matrix Factorization (PMF) 5.0 was utilized to determine major emission sources that contributed to the outdoor and indoor PM2.5 levels during this study. Results: The major sources of outdoor PM2.5 were secondary aerosols (28%), traffic/urban dust (24%), iron/steel industries (15%), sewage/municipal incineration (10%), and oil combustion/refinery (6%). The major sources of indoor PM2.5 were organic compounds (45%), traffic + sewage/municipal incineration (14%), secondary aerosols (13%), smoking (7%), and urban dust (2%). Infiltration of outdoor PM2.5 for sham, HEPA-type, and true HEPA air filtration was 79 ± 24%, 61 ± 32%, and 51 ± 34%, respectively. Conclusions: The results from our study showed that intervention with PAFs was able to significantly decrease indoor PM2.5 derived from outdoor and indoor PM2.5 sources. The PAFs were also able to significantly reduce the infiltration of outdoor PM2.5. The results of this study provide insights into what types of major PM2.5 sources this community is exposed to and what degree of air quality and systolic blood pressure improvements are possible through the use of commercially available PAFs in a real-world setting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...